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ABSTRACT

Synchronization is an important technique to provide
frequency coherency of remotely located independent oscillators
to the same frequency reference. To extend this technique to the
millimeter wave frequencies of interest, subharmonic injection
locking is used as a viable technique. This attractive method
primarily relies on nonlinear characteristics of microwave
devices, such as FET, to extend injection locking of millimeter
wave oscillators to large subharmonic numbers. Important figure
of merit of injection locked oscillators is locking range, and goal
of this paper is to present analytical method to express locking
range of the subharmonically locked oscillators in terms of
nonlinear current voltage relationship. Experimental results of a
subharmonically injection locked FET oscillator at 18GHz are
also presented.

INTRODUCTION

Large aperture phased array antennas composed of many
remotely located active T/R modules are designed for more
advanced communication and imaging systems. For coherent
operation of the phased array antennas, the active modules
should be phase and frequency synchronized. Various
techniques of frequency synchronization have been investigated
and the most promising approach is injection locking of local
oscillators, existing in each array or subarray modules, to the
same injected frequency reference. The injection locking process
can be accomplished at the frequencies in the proximity of the
free-running oscillation frequency of the local oscillator, related
to the frequency reference either by the fundamental,
superharmonic, subharmonic, or a mixed frequency. All these
techniques of injection locking rely on the nonlinear
characteristics of active devices used in oscillators to force
oscillation at the injected signal frequency. In general the topic of
frequency control of oscillators falls under frequency
entrainment or forced oscillations.

Forced oscillations in nonlinear oscillators, on a purely
mathematical basis was first introduced by Van der Pol in 1927
[1], and has extensively been studied in standard text books [2,
3]. Equally interesting problem of parametric resonance, has
also been analyzed on the basis of Van der Pol theory [4]. Van
der Pol's mathematical approach is complex and difficult to
implement for the microwave injection locked oscillators.
However, the approach presented by Adler [5] and Jelonik [6],
defines the frequency entrainment phenomena in terms of a first
order nonlinear differential equation, which yields a figure of
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merit known as locking range. This figure of merit explains the
performance of different types of oscillators, in a well defined
system, by a common relationship relating the locking gain to
the locking range by external Q of the oscillator. Although
Adler's initial analysis assumed small-signal conditions, but his
results have also been extended to large forced oscillations [7].
Adler's approach has been also thoroughly studied using
nonlinear equivalent circuit model [8], and the describing
function method [9].

An approach similar to Adler's figure of merit was
extended to describe the super-harmonic locking range [10];
however, no theory is reported on the subharmonic locking
range. The goal of this paper is to calculate the locking range for
the subharmonically injection locked oscillators in an approach
analogous to Adler's.

THEORY

Block diagram of a nonlinear oscillator under forced
oscillation is shown in Fig. 1, which is governed by the

following set of equations:
u=1f(e) 1)
HDju+v=e 2
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Fig. 1. Block diagram of a nonlinear oscillator.

where ¢ and u denote the input and output respectively, f(e) is a
nonlinear function describing the dependence of output on
input, H is a linear function of differential operators D, and v is
the synchronizing reference signal. For example in the simple
case of FET, ¢ is the input voltage across gate to source whereas
u corresponds to the output drain current. The function f for this
example is a complex function, if nonlinear transconductance as
well as nonlinear Schottky contact capacitance are included in the
device model. The present analysis assumes a real representation
of function f rahter than a complex one (i.e., only nonlinear
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conductance), however a similar approach can be pursued for
the general case of complex representation of function f,

Following Adler [5], the steady state solution is investigated.
The linear part of H is approximated by a single-tuned resonant

circuit with the quality factor Q. Let the transfer function of the
linear part be expressed by [5, 7]:

H,

1+2iQA0/®

H= 3)

where Aw is the frequency deviation from the resonant

frequency of the single-tuned resonant circuit, . For small
synchronizing signals, a steady state solutions is:

H(D)u, = ¢, = Ecoswt,
where E is the maximum amplitude of input signal. Substituting

e = ey+v into Eq. (1) as the input driving force and expanding u
in a Taylor series results in:

+ oo oo

u=f(e,+v)= 22 A n(E) et vm/m!)
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where

+n

Apa(E)=A _ po(E) = (1121 ,[ fm}Ecosa)cos(node. (6)

Simple relations based on trigonometric identities of cos(nts)o
exist between the coefficients Ay, n(E) expressed by Eq. (6):

[Am,(n - s)(E) - Am,(n + s)(E)]/ 2= [n/(SE)] A(m -1),n (7)
[Amn -5)E) + A n + ) B2 = d A1) a(BVAE.  (8)

Substituting Eq. (4) in Eq. (5), and use of relationships
expressed by Egs. (7) and (8) in addition to the harmonic
balance method [11], Eq. (5) can be expressed as:

0o

u = fleg + v) = fleg) + f(e)v + fD (e )(v2/2Y) +...= 2 fm)(e,)(v/m!)

m=

0

(u/2) elot = eispt {Ao’s + VIGSE) [Aq, 10089 + (V/2)A; 5 0820 + (V/2)2 Ay 3 c0s3 + (V/2)3 Aj 4
cosd@ + (V/2)* Ay 5cos5¢ + ... + (V/2)P App+1 0s@+1)¢ + ...] +iV [ dAg 1/dE sing +
(V12) dAy/dE sin2¢ + (V/2)2 dAg 3/dE sin3¢ + (V/2)3 dAj 4/dE sinde + (V/2)4
dA4,5/dE sin5Q + ... + (V/2)P A 5,1 /dE sin(p+1)¢ + ...] } eistot

Let the subharmonic synchronizing signal be in the form of:

v = (V72) {el(ot +9) +¢-i(0t +9) } = Veos(at +¢)  (4)

Replacing this expression in Eq. (2) in conjunction with Eq. (3),
and separating real and imaginary parts, the following set of
equations are derived:

E= H(,{Ao’S + VISE) [Aq,1c08¢ + (V/2)A] 5 cos2¢ + (V/2)2 Ag,3 o830 + (V/2)3 Az 4 cosdo +
(V72)* Ay 5 cos5¢ + higher order terms] }

E( 2A0/0)Q =V H, d/dE { Ao,1(E) sing + (V/2)A1 5(E) cos2¢ + (V/2)2 Ay 3(E) cos3¢ + (V/2)3
Az 4(E) cosdo + (Vi2)h Ay 5(E) cos5¢ + higher order terms }.

where V and ¢ are maximum amplitude and phase of the

subharmonic injection signal at frequency g~ G¥s, and s is an
integer, signifying the order of the subharmonic number (s:1).

The expansion of f{m) (Ecoswt) in terms of the complete
orthogonal basis set of exp(inw,f) results in:
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In the above separation of real and imaginary parts, function f(e)
is assumed to be a real function. This is a valid assumption for
devices with predominantly nonlinear conductance. However in
general, if function f(e) is complex, mathematics is straight
forward and a similar approach as presented can be pursued.
The above expression can be solved to calculate locking range of
a subharmonically injection locked oscillator at subharmonic

frequency of @ =@s:



A®, = [(@/2Q)( V/E)] Hy d/dE { Ag 1(B) sing + (V/2)Aq 2(E) cos2¢ + (V/2)2 Ag 5(E) cos39 + (V/2)3
A3 4(B) cosd® + (V/2)* Ay s(E) cos50 + higher order terms} )

The first square bracket term is identified as the Adler's figure of
merit for locking range at the fundamental frequency. This term
can be presented in terms of injected and output power as:

20, = (W/Q)(V/E) = (w/Q) V (Pi/P),
where Pj and P, are the injected power and the output power of
the injection locked oscillator. At both ends of locking range, the
phase of difference between the sth harmonic of the injected
signal and the slave oscillator output is +r/2, therefore a phase

shift of ¢ = * (/2s) corresponds to the edges of the locking
range.

ANALYSIS

_ Input-output nonlinear characteristics of active nonlinear
microwave devices, such as FET, can be represented in terms of
a polynominal relating current-voltage as:

©0

i=f(e) = 2 apeM = -aze + age? + azed+ azed + aseS +...
n=1
where a, in general is a complex quantity relating the level
dependent nonlinear conductance and capacitance of active
devices and a; is complex number with a positive real part so
that source of power generation can be accounted for. In the
present analysis only nonlinear conductance is considered, hence
‘only real numbers are selected for a,,. To calculate locking range

of the subharmonically injection locked oscillators at
subharmonic factor s, the input-output dependence presented by
function f(e) is utilized in conjunction with Eq. (6).

More specifically, the expression predicting locking range
for subharmonic factor s=2 is derived as:

4V (ay+3a,E2)

200, = 200, ——22 "
* asE*+2a,E2~4a,

This expression is derieved by recognizing that the only nonzero
terms in Eq. (9) are A, > and Aj 5 . Contribution of Ay toHy
is negated due to the fact that the cos2¢ at end of locking range
(i.e., 9=T/4) is zero, hence the overall contribution is limited to

Ay 2. Therefore, only derivative of Ay 5 term contributes to the
locking range expression.

In a similar fashion locking range dependence on the injected

signal for s=3 can be derived using Eq. (6). This will results in a
quadratic of on injected voltage as:

2V2(3as+15a5E%)

2Am5 = 2Am, 7 3
asE"+2a3E"—4a,

where only contribution of A, 3 and A, 3 are necessary to
include and others terms in Eq. (6) are either zero or their
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contribution is very negligible. Once again since cos3¢ will be
zero at the edge of locking range for subharmonic factor s=3,
only derivative of Ay 3 will contribute to the locking range.

On the other hand at subharmonic fasctor of s=4, the locking
range can be simplified as:

12V,

200, = 2A00p ——m————
agE +2a3;E"-4a,

where only Ag 4 and Aj 4 terms have nonzero contribution.
Following this approach, a pattern becomes evident predicting
the terms contributing to the locking range. In fact for
subharmonic factor s only the A, s and Ag_q ¢ terms should be
considered in the locking range expression. The above
expressions clearly define dependence of locking range on the
device nonlinearity, output power of oscillator as well as the
injected power level.

EXPERIMENT

To validate results of the theoretical analysis, an oscillator
was constructed using Avantek transitor. The free-running
oscillation output power of 10dBm at 17.956GHz is measured
for this oscillator. Nonlinear equivalent circuit model of this
oscillator was determined by measuring load admittance for
maximum output power using automated load-pull measurement
available from David Sarnoff Research Center. Power level at
harmonics of free-running oscillation frequency at the given load
was also monitored on a spectrum analyzer, so that nonlinear
current and voltage relationship can be identified. Based on the
equivalent circuit model and extent of the nonlinear
transconductance of the transitor locking range for subharmonic
factors of 2, 3, and 4 were calculated. Experimental results of
locking range as a function of injected power for the first three
subharmonic factors are shown in Fig. 2. Detailed comparison
of theoretical and experimental results will be presented at the
meeting.

CONCLUSION

General expressions for theoretical prediction of
subharmonic injection locking range of oscillators with nonlinear
input-output relationship was presented. This analysis was
extended to describe oscillators realized using real nonlinear
input voltage and output current relationships. In particular
analytical results for an oscillator presented by a fifth order
polynominal describing nonlinear current and voltage
relationship for subharmonic factors of 2, 3, and 4. Experiments
relating subharmonic locking range of FET oscillator of 18GHz
to the injected signal level were also reported.
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Fig. 2. Locking range of an injection locked FET oscillator with an output power of 10dBm at 18GHz as a
function of various subharmonic numbers of s=2, s=3, and s=4.
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